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1 Introduction

Charmless inclusive B decays play an important role in our understanding of the standard

model and its possible extensions. The inclusive semileptonic B decay currently allows

for the most accurate determination of |Vub|, one of the fundamental parameters of the

standard model, while the inclusive B̄ → Xs γ rate is used extensively in constraining

models of new physics.

Since ΛQCD is much smaller than the b-quark mass (mb), one would expect that various

physical observables for inclusive B decays can be expressed in terms of a local operator
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product expansion (OPE), where the various operators are suppressed by an increasing

power of mb. This is the case for the partial and total rate of B̄ → Xc l ν̄, where schemat-

ically we have

dΓ ∼ c 0 O0 +
∑

i=2

∑

j

1

mi
b

c j
i Oi

j. (1.1)

The current state of the art is that c0 is known at O(α2
s) [1, 2], while c j

3 [3] and c j
4 [4]

are known at O(α0
s). For c j

2 , the coefficient of the “kinetic energy” operator c1
2, is known

at O(αs) [5], while c2
2, the coefficient of the “chromomagnetic” operator, is known only at

O(α0
s) [6, 7].

For the charmless inclusive B decays, B̄ → Xs γ and B̄ → Xu l ν̄, the situation is more

complicated. Experimental cuts force the hadronic jet X to have large energy EX ∼ mb,

but only moderate invariant mass P 2
X ∼ mbΛQCD. Consequently there are three energy

scales in the problem: a hard scale (µh ∼ mb), a hard-collinear scale (µi ∼
√

mbΛQCD) and

a soft scale (µs ∼ ΛQCD). For this kinematical region, often called the “end point region”

or “the shape function region”, the partial rates can be expressed in terms of a non-local

OPE. Thus, for B̄ → Xu l ν̄ and the Q7γ − Q7γ contribution to B̄ → Xs γ we have an

expansion which is schematically [8]:

dΓu ∼ Hu · J ⊗ S +
∑

i=1

∑

j, k, l

1

mi
b

hj
i · jk

i ⊗ sl
i

dΓs ∼ Hs · J ⊗ S +
∑

i=1

∑

j, k, l

1

mi
b

hj
i · jk

i ⊗ sl
i, (1.2)

where the hard functions (H, hi) and the jet functions (J , ji) are calculable in perturbation

theory, while the shape functions (S, si) are non-local light-cone operators which are non

perturbative objects.1 Factorization theorems such as (1.2) are most conveniently proven

using the Soft Collinear Effective Theory (SCET) [12–14].

The current state of the art is as follows. Hu was recently calculated at O(α2
s) [15–18]

and Hs [19] is known2 at O(αs). The leading order jet function J is known at O(α2
s) [25].

Of the 1/mb corrections, only the terms of the form h0
1 · j0

1 ⊗ s1
1 are explicitly known at

O(α0
s) [26–28]. Therefore the factorization formula was proven only for the leading order

term and one of the 1/mb suppressed terms.

The knowledge of the leading order hard and jet functions at O(αs) and the h0
1 ·j0

1 ⊗s1
1

terms atO(α0
s) (as well as known, but not properly factorized, αs/m

i
b and 1/m2

b corrections)

was the basis of the precision determination of |Vub| in [29–31]. In order to improve the

accuracy even further, one would like to know as much as possible about the properly

factorized α2
s, αs/mb, and the 1/m2

b corrections, in decreasing order of importance. What

would the calculation of these corrections entail?

In order to find the least important term, namely the 1/m2
b corrections, the heavy-

to-light SCET currents need to be matched at tree level to fourth order in the SCET

1For other contributions to dΓs, such as Q7γ − Q8g, one finds that more complicated factorization

theorems hold [9–11]. We will not discuss these contributions in this paper.
2The O(α2

s) expression can be extracted from known results in the literature [20–23], as was done in [24]

for a “normalized” Hs at the scale µh = mb.

– 2 –



J
H
E
P
0
6
(
2
0
0
9
)
0
8
3

expansion parameter
√

ΛQCD/mb. The most important term, namely the α2
s corrections,

should appear shortly now that the last ingredient, Hu, was calculated at O(α2
s) [15–18].

The second most important correction is of order αs/mb. From (1.2) one would naively

expect to find three terms which scale like 1/mb and need to be calculated to O(αs):

h1 · j0 ⊗ s0, h0 · j1 ⊗ s0, and h0 · j0 ⊗ s1 (the subscript 1 is implicit). Less formally, we

expect to find subleading hard, jet and shape functions, respectively. Let us discuss each

of these terms.

Since the hard functions are products of Wilson coefficients extracted in the matching

of QCD onto SCET, they depend only on kinematical quantities which scale like mb, i.e.

mb and EX + |~PX |. As such they always scale as O(1) in the 1/mb expansion, so it is

clear that terms of the form h1 · j0 ⊗ s0 cannot appear at any order in αs. In other words,

subleading hard functions can appear only when they are multiplied by subleading jet or

shape functions.

The “subleading shape functions” (SSF), i.e. terms of the form h0 · j0⊗ s1 which arise

already at O(α0
s), can be calculated, in principle, at O(αs), i.e. both h0 and j0 need to be

calculated at O(αs). For the former a one loop matching of the SCET current to second

order is needed, while the calculation of the latter was outlined (but not explicitly done!)

in [26] and [28].

The focus of this paper is to prove that terms of the form h0 · j1 ⊗ s0, i.e. “subleading

jet functions” (SJF), indeed exist in the factorization formula for inclusive B decays. We

will first prove the existence of such terms by showing that the partonic O(αs) terms in

the hadronic tensor which are 1/mb suppressed in the end point region arise from two

momentum regions: soft and hard-collinear. We will then show how the soft region is

accounted for by the parton level one loop diagrams of the known O(α0
s) h0 · j0 ⊗ s1 term,

and reproduce the hard-collinear region via time order products (TOPs) of subleading

SCET currents. After establishing the need for the h0 · j1 ⊗ s0 term, we will calculate the

subleading jet functions via the usual two step matching. In the first step the QCD currents

and Lagrangian are matched onto SCET at tree level and to second order in
√

ΛQCD/mb.

In the second step the SCET current correlator is matched onto Heavy Quark Effective

Theory (HQET) [32] and the subleading jet functions are extracted. Since we are interested

in αs/mb suppressed terms, and the subleading jet functions start at O(αs), it is sufficient

to consider only the case of tree level matching of QCD onto SCET, for which we can use

known results from the literature. For this case we will define the subleading jet functions

to all orders in αs(µi), and calculate them explicitly at first order in αs(µi).

The subleading jet functions’ contribution is, in some sense, the most important term at

order αs/mb. When integrating over larger portions of phase space, the one loop subleading

jet functions’ contribution is no longer power suppressed. The other αs/mb term in the

factorization formula, namely the O(αs) h0 · j0⊗ s1 contribution, although formally αs/mb

suppressed in the end point region, is expected to become even more power suppressed

and thus is less important outside of the end point region. In other words, the terms

which we will calculate are kinematically and not hadronically suppressed, and as such

are important outside of the end point region. Incidentally, experiments are starting to

probe the kinematic area outside of the end point region. Finally, since the subleading jet

– 3 –
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functions appear in convolution with the leading order shape function, their inclusion does

not introduce new hadronic uncertainties.

Another motivation for studying subleading jet functions is that they arise also outside

of the context of flavor physics. Since these functions encode the interaction of hard-

collinear quarks and gluons, the same functions are expected to appear in the x→ 1 region

of deep inelastic scattering [33–36].

The rest of the paper is organized as follows. After a short review of known results

in section 2, we calculate in section 3 the partonic O(αs) terms in the hadronic tensor

which are 1/mb suppressed in the end point region. We then show that they arise from

two momentum regions: soft and hard-collinear. In section 4 we explain how the soft

region is accounted for by the parton level one loop diagrams of the known h0 · j0 ⊗ s1

terms, and reproduce the hard-collinear region via time order products of subleading SCET

currents. In the main section of the paper, section 5, we define the subleading jet functions,

for the case of a tree level hard function, to all orders in αs(µi) and calculate their one

loop expressions. After a short discussion of their renormalization, we present properly

factorized expressions for the decay rates of B̄ → Xu l ν̄ and the Q7γ − Q7γ contribution

to B̄ → Xs γ. In section 6 we present our conclusions. The appendices contain proofs

for some of the statements made in section 5. A reader who is mostly interested in the

phenomenological results, can skip section 3 and 4 and proceed directly to section 5.

2 Review

In order to make the paper self-contained, we review in this section some known results

about inclusive B decays, as well as some basic ingredients of SCET. For a more detailed

account see [37].

Kinematical variables. The kinematics of inclusive B decays is such that in its rest

frame, the B meson decays into a hadronic jet carrying momentum PX and a non-hadronic

jet (a lepton pair for B̄ → Xu l ν̄ and a photon for B̄ → Xs γ) carrying momentum q.

Denoting by MB the mass of the B meson and by v its four-velocity, we have therefore

MBv = PX + q. Taking the four velocity of the B meson to be v = (1, 0, 0, 0) and

~q to point in the negative z direction, we define two light-like vectors nµ = (1, 0, 0, 1),

n̄µ = (1, 0, 0,−1), such that n + n̄ = 2v, n · n̄ = 2, and n · v = n̄ · v = 1. Any four vector

aµ can be decomposed as

aµ = n̄ · anµ

2
+ n · an̄µ

2
+ aµ
⊥. (2.1)

Notice that we have taken v⊥ = q⊥ = 0. Having fixed the two light-like vectors, rotational

invariance implies that the transverse indices can only be contracted using

gµν
⊥ = gµν − nµn̄ν + nν n̄µ

2
, ǫµν

⊥ =
1

2
ǫµναβ n̄αnβ, (2.2)

where ǫ0123 = 1.

Conservation of 4-momentum implies that for the B̄ → Xs γ decay mode there is

one independent kinematical variable, which we can take to be the photon energy Eγ or
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n · PX = MB − 2Eγ . The B̄ → Xu l ν̄ decay mode has three independent variables which

we can take to be [29, 38, 39]

P+ = EX − |~PX | = n · PX , P− = EX + |~PX | = n̄ · PX , Pl = MB − 2El. (2.3)

These are the “hadronic” variables. It is also useful to define a “partonic” set of variables.

Let Λ̄ = MB −mb, where mb is the b quark mass. Defining p = mbv − q = PX − Λ̄v, we

have n · p = n · P − Λ̄, n̄ · p = n̄ · P − Λ̄ as the corresponding partonic variables to P+ and

P−. The hadronic tensor is naturally expressed in terms of n · p and n̄ · p. Notice also that

by construction p⊥ = 0, and as a result p2 = n̄ · p n · p.

Hadronic tensor. Partial rates for the inclusive decays B̄ → Xu l ν̄, and the Q7γ −Q7γ

contribution to B̄ → Xs γ can be calculated using the optical theorem. The central object

to consider is the hadronic tensor, which is the discontinuity of a forward matrix element

of a correlator of two currents:

Wij =
1

π

1

2MB
Im

〈

B̄(v)

∣
∣
∣
∣
i

∫

d4x eiq·x T
{

J†i (0)Jj(x)
}
∣
∣
∣
∣
B̄(v)

〉

. (2.4)

where, again, v is the velocity of the B-meson and q is the momentum of the lepton pair

(photon) in the B̄ → Xu l ν̄ (B̄ → Xs γ) decay. The currents can generally be written as

J†i = b̄ Γi q and Jj = q̄ Γj b. For semileptonic decays Γi = γµ(1 − γ5) and Γj = γν(1 − γ5),

and for the Q7γ−Q7γ contribution to B̄ → Xs γ, Γi = 1
2(1−γ5)γ

⊥
µ /̄n, Γj = 1

2 /̄nγµ
⊥(1−γ5). In

order to somewhat simplify the traces in the expression for the hadronic tensor, we assume

that Γi and Γj contain the same number of Dirac’s gamma matrices, but otherwise we take

Γi,j to be arbitrary Dirac structures.

For radiative decays the hadronic tensor is given in term of one function W ≡ Wij .

The Q7γ −Q7γ contribution to photon spectrum can then be written as3

dΓ

dEγ
= −G2

F α

4π4
E3

γ |VtbV
∗
ts|2 m2

b |Ceff
7γ |2 W (P+). (2.5)

For semileptonic decays we can decompose the hadronic tensor in terms of five functions,

W̃i(P+, P−),

Wij = W µν = (nµvν + nνvµ − gµν − iǫµναβnαvβ)W̃1

−gµνW̃2 + vµvνW̃3 + (nµvν + nνvµ)W̃4 + nµnνW̃5. (2.6)

The triple differential decay rate can be written in terms of W̃1, . . . , W̃5 as [29]

d3Γ

dP+ dP− dPl
=

G2
F |Vub|2
16π3

(MB − P+)

[

(P− − Pl)(MB − P− + Pl − P+) W̃1

+(MB − P−)(P− − P+)
W̃2

2
+ (P− − Pl)(Pl − P+)

(
y

4
W̃3 + W̃4 +

1

y
W̃5

)]

,

(2.7)

3See [29] for the exact definition of the various parameters in the this equation. Notice that W equals

−2U(µh, µi)Fγ of [29].
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where

y =
P− − P+

MB − P+
. (2.8)

Known 1/mb corrections. The hadronic tensor can be factorized as in equation (1.2).

In this paper we will be interested in the terms which are suppressed by one power of

mb. There are currently two types of these terms which are known. The first type are

“subleading shape functions” i.e. properly factorized terms of the form h0 ·j0⊗s1, where h0

and j0 are explicitly known atO(α0
s). The second type are “kinematical power corrections”,

i.e. terms calculated within the parton model which are suppressed both by αs and 1/mb.

These terms will be properly factorized in this paper. We now briefly review these two

types.

The contributions of the form h0 · j0 ⊗ s1 to the hadronic tensor, i.e. the subleading

shape functions, were calculated using SCET in [26–28] (for earlier partial calculations

see [40–44]). Here we use the results of [27]. The above contribution to the hadronic

tensor is:

W SSF
ij =

∫

dω δ(n · p + ω)

[
ω S(ω) + t(ω)

mb
T2 +

s(ω)

mb
T1 +

t(ω)

n̄ · p T3 +
u(ω)

n̄ · p T1 −
v(ω)

n̄ · p T4

]

−παs

∫

dω δ(n · p + ω)

[
fu(ω)

n̄ · p T1 +
fv(ω)

n̄ · p T4

]

(2.9)

where

T1 =
1

4
tr

[

Γi /n Γj
1 + /v

2

]

, T3 =
1

4
tr

[

Γi γ
⊥
ρ γ5 Γj

1 + /v

2
γρ
⊥γ5

]

,

T2 =
1

8
tr
[

Γi /n Γj (/v − /n)
]

, T4 =
1

4
tr

[

Γi /nγ5 Γj
1 + /v

2
(/v − /n) γ5

]

. (2.10)

The subleading shape functions are defined as:

〈h̄(0) [0, x−]h(x−)〉 =

∫

dω e−
i
2
ωn̄·x S(ω) ,

mb 〈i
∫

d4z T{h̄(0) [0, x−]h(x−)L(2)
h (z)}〉 =

∫

dω e−
i
2
ωn̄·x s(ω) ,

〈h̄(0) /n [0, x−] (i /D⊥h)(x−)〉 =

∫

dω e−
i
2
ωn̄·x t(ω) ,

−i

n̄·x/2∫

0

dt 〈h̄(0) [0, tn] (iD⊥)2(tn) [tn, x−]h(x−)〉 =

∫

dω e−
i
2
ωn̄·x u(ω) ,

−i

n̄·x/2∫

0

dt 〈h̄(0)
/n

2
[0, tn]σ⊥µν gGµν

⊥ (tn) [tn, x−]h(x−)〉 =

∫

dω e−
i
2
ωn̄·x v(ω) , (2.11)
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and

2(−i)2
n̄·x/2∫

0

dt1

n̄·x/2∫

t1

dt2 〈
[ (

h̄S
)

0
ta
]

k

[
ta

(

S†h
)

x−

]

l

[
(q̄S)t2n

]

l
/n
[ (

S†q
)

t1n

]

k
〉

=

∫

dω e−
i
2
ωn̄·x fu(ω) ,

2(−i)2
n̄·x/2∫

0

dt1

n̄·x/2∫

t1

dt2 〈
[ (

h̄S
)

0
ta
]

k
/nγ5

[
ta

(

S†h
)

x−

]

l

[
(q̄S)t2n

]

l
/nγ5

[ (

S†q
)

t1n

]

k
〉

=

∫

dω e−
i
2
ωn̄·x fv(ω) , (2.12)

where k, l are color indices, S in equation (2.12) is a soft Wilson line defined in [27] (not

to be confused with the leading order shape function S(ω)!), [x, y] ≡ S(x)S†(y), L(2)
h is the

next-to-leading term in the expansion of the HQET Lagrangian, and

〈h̄ . . . h〉 ≡ 〈B̄(v)| h̄ . . . h |B̄(v)〉
2MB

.

The second type of terms, namely the kinematical power corrections, can be found in [29],

where they were called Fkin. In that paper the corrections were convoluted with the “tree

level shape function”, in absence of proper factorization. The relevant expressions are, for

the Q7γ −Q7γ contribution to B̄ → Xs γ,

W = − 2

MB − P+

CF αs(µ̄)

4π

∫ P+

0
dω̂ Ŝ(ω̂, µi) (−15− 16 ln x) , (2.13)

and for B̄ → Xu l ν̄,

W̃
kin(1)
1 =

1

MB − P+

CF αs(µ̄)

4π
∫ P+

0
dω̂ Ŝ(ω̂, µi)

[

6− 5

y
+

(
12

y
− 4

)

ln
y

x

]

,

W̃
kin(1)
2 =

1

MB − P+

CF αs(µ̄)

4π

∫ P+

0
dω̂ Ŝ(ω̂, µi)

[
2

y

]

,

(
y

4
W̃3 + W̃4 +

1

y
W̃5

)kin(1)

=
1

MB − P+

CF αs(µ̄)

4π

∫ P+

0
dω̂ Ŝ(ω̂, µi)

[

4− 22

y
+

8

y
ln

y

x

]

.

(2.14)

where

x =
P+ − ω̂

MB − P+
.

The “hatted” function Ŝ(ω̂, µi) is related to S(ω), defined in equation (2.11), by a change

of variables and a 1/mb suppressed term. The exact relation can be found in [29].
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Since the expansion in [29] was organized in inverse powers of MB −P+ instead of mb,

for future reference we will need also the leading order term for W̃1

W̃
(0)
1 = H1(y, µh)

∫ P+

0
dω̂ ymb J(ymb(P+ − ω̂), µi) Ŝ(ω̂, µi) , (2.15)

where

Hu1(y, µh) = 1 +
CF αs(µh)

4π

[

− 4 ln2 ymb

µh
+ 10 ln

ymb

µh
− 4 ln y

−2 ln y

1− y
− 4L2(1−y)− π2

6
−12

]

, (2.16)

and

J(p2, µ) = δ(p2)

[

1 +
CF αs(µ)

4π
(7− π2)

]

+
CF αs(µ)

4π

[
1

p2

(

4 ln
p2

µ2
− 3

)][µ2]

∗

. (2.17)

Some ingredients of SCET. SCET is the appropriate effective field theory to discuss

inclusive B decays in the end point region. The SCET expansion parameter is
√

λ ≡
√

ΛQCD/mb. For the following we will need the expansion of the SCET heavy-to-light

currents to second order, as well as the leading order hard-collinear Lagrangian.4 These

are most conveniently listed in [27].

First, the hard-collinear Lagrangian is

L(0)
ξ = ξ̄(0) /̄n

2

(

in ·D(0)
hc + i /D

(0)
⊥hc

1

in̄ ·D(0)
hc

i /D
(0)
⊥hc

)

ξ(0)

= ξ̄(0) /̄n

2

(

in ·D(0)
hc + i /D

(0)
⊥hc W

1

in̄ · ∂ W † i /D
(0)
⊥hc

)

ξ(0) , (2.18)

where the Lagrangian is written in terms of “sterile” fields, i.e. after the soft degrees

of freedom were decoupled via a field redefinition. In the last equation iD
(0)µ
hc = i∂µ +

gA
(0)µ
hc and

W = P exp

(

ig

0∫

−∞

dt n̄ · A(0)
hc (x + tn̄)

)

. (2.19)

Next we need the expressions for the currents. We present them in terms of the

“calligraphic fields” [45]

X = W †ξ(0) , A
µ
hc = W †(iD

(0)µ
hc W ). (2.20)

Generally speaking, in the SCET expansion of the currents (and the Lagrangian),

the power suppression arises from two separate sources, not mutually exclusive: presence

of power suppressed components of the hard-collinear gluon field or the hard-collinear

4The power corrections to the hard-collinear Lagrangian always involve extra soft particles (apart from

the heavy quark) and as such do not contribute to the subleading jet functions.
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covariant derivative, and presence of soft fields or their covariant derivatives. For the

purpose of this paper we need only currents of the first type, which are

J (0) = X̄Γ
(

S†h
)

x−

,

J (1) = − X̄
/̄n

2
/A⊥hc

1

in̄ · ←−∂
Γ
(

S†h
)

x−

− X̄Γ
/n

2mb
/A⊥hc

(

S†h
)

x−

,

J (2) = − X̄Γ
/n

2mb
n ·Ahc

(

S†h
)

x−

− X̄ Γ
1

in̄ · ∂ n ·Ahc

(

S†h
)

x−

− X̄Γ
1

in̄ · ∂
(i /D⊥hc /A⊥hc)

mb

(

S†h
)

x−

+ X̄
i
←−
/D⊥hc

mb

1

in̄ · ←−∂
/̄n

2
Γ

/n

2
/A⊥hc

(

S†h
)

x−

.(2.21)

where we have suppressed the overall e−imbv·x factor in each term. For completeness we

list also the currents of the second type, which we will not use

J
(1)
not used = X̄ Γ xµ

⊥

(

S†Dµh
)

x−

+ X̄
/̄n

2
i
←−
/∂⊥

1

in̄ · ←−∂
Γ
(

S†h
)

x−

,

J
(2)
not used = X̄ Γ

[

n · x
2

(

S†n̄ ·Dh
)

x−

+
xµ
⊥xν
⊥

2

(

S†DµDνh
)

x−

+

(

S†
i /D

2mb
h

)

x−

]

+X̄
/̄n

2
i
←−
/∂⊥

1

in̄ · ←−∂
Γ xµ
⊥

(

S†Dµh
)

x−

−X̄

(
/̄n

2
/A⊥hc

1

in̄ · ←−∂
Γ + Γ

/n

2mb
/A⊥hc

)

xµ
⊥

(

S†Dµh
)

x−

. (2.22)

The second term in J
(1)
not used does not contain any soft fields apart from the heavy quark.

Still, we can ignore its contribution in this paper, since we can always set p⊥, where p is

the total hard-collinear momentum, to zero.

It should be noted that these currents were matched at zeroth order in αs(µh) and as

a result the Wilson coefficients are always equal to 1. When matching beyond zeroth order

in αs(µh), one would expect more complicated currents with multiple non-localities, see for

example the one loop matching onto the first order SCET current in [46]. The resulting

contributions to the hadronic tensor would be suppressed by αs(µh) × αs(µi) × 1/mb and

as such are much smaller than the contributions considered in this paper.

3 Analysis by regions

In this section we will calculate, within the parton model, the one loop corrections to the

hadronic tensor, defined in equation (2.4), that scale as O(λ0) in the shape-function region,

i.e. terms which are suppressed by 1/mb compared to the leading order terms, which scale

as O(λ−1). We perform the calculation for a general Dirac structure in the hadronic tensor.

In order to simplify the calculation we neglect the residual momentum of the b quark, i.e.

we work with on-shell b quarks. As a result, all the terms are constants or logarithms of

the form ln (n · p)/(n̄ · p) ≡ ln r, where p is the partonic momentum of the jet, defined in

section 2, which satisfies p⊥ = 0 and p2 = n̄ · p n · p.
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�q

b b �q

b b

�q

b b �q

b b

Figure 1. One loop diagrams contributing to the hadronic tensor, top left: “Self energy” diagram,

top right: “Box” diagram, bottom line: two “Vertex” diagrams. The letter next to each solid line

denotes the flavor of the quark.

We perform the calculation both in “full QCD” and by using the method or re-

gions [47, 48]. We find that only two kinematical regions are needed: a hard-collinear

region, where the loop momentum scales as (1, λ, λ1/2), and a soft region, where the loop

momentum scales as (λ, λ, λ). There is no contribution from a hard region, were the loop

momentum scales as (1, 1, 1), which is in accordance with the lack of terms of the form

h1 · j0 ⊗ s0 in the factorization formula. As explained in the introduction this is a general

result which holds also beyond one loop order. Typically, we find that terms of the form

ln r can be decomposed as:

ln r ≡ ln
n · p
n̄ · p = −1

ǫ
+ ln

µ2

p2
︸ ︷︷ ︸

hard−collinear

+
1

ǫ
+ ln

(n · p)2

µ2
︸ ︷︷ ︸

soft

. (3.1)

At one loop there are several diagrams that contribute to the hadronic tensor. These

diagrams are shown in figure 1. We present the results for each diagram separately, namely,

the “Self energy” diagram (top left), the “Box” diagram (top right), and the “Vertex”

contribution which is the sum of the diagrams on the bottom line of figure 1. We use

Feynman gauge throughout this paper.

3.1 Full QCD

Calculating the diagrams we find the following results:

• Self energy:

Wij =
CF αs

4π
θ(p2) tr

[

Γi /̄n Γj
1 + /v

2

]
1

n̄ · p
1

4
, (3.2)
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• Box:

Wij =
CF αs

4π
θ(p2)

{

tr

[

Γi /n Γj
1 + /v

2

]
1

n̄ · p (−1− ln r) + tr [Γi /n Γj /̄n]
1

mb

1

4

+tr [Γi /n Γj /n]
1

mb

1

4
(−2− ln r) + tr [Γi /n Γj /n]

n̄ · p
m2

b

1

16

}

, (3.3)

• Vertex:

Wij =
CF αs

4π
θ(p2)

{

tr [Γi /n Γj /̄n]
1

mb

1

4

(
3

2
+ ln r

)

−tr

[

Γi /n Γj
1 + /v

2

]
1

n̄ · p (1 + 2 ln r)

−
(

tr

[

Γi /n γβ γα
⊥ Γj γ⊥α γβ

1 + /v

2

]

+ tr

[

Γi γ
α
⊥ γβ /n Γj

1 + /v

2
γβ γ⊥α

])
1

mb

1

16

−tr
[

Γi γ
α
⊥ Γj γ⊥α

] 1

mb

1

8

}

. (3.4)

In order to check these results, we can compare them to the expansion of the one loop

expressions of the hadronic tensor for B̄ → Xu l ν̄, and the Q7γ − Q7γ contribution to

B̄ → Xs γ. This is most easily done by using equations (2.13)–(2.17) in section 2, which

are taken from [29]. In that paper the correction were convoluted with the “tree level shape

function”. We can undo this convolution by the replacements:

MB − P+ → mb, y → n̄ · p
mb

,
x

y
→ n · p

n̄ · p,

∫ P+

0
dω̂ Ŝ(ω̂, µi)→ 1. (3.5)

For B̄ → Xu l ν̄ we also need to expand W̃
(0)
1 in powers of n · p/n̄ · p. In total we find for

B̄ → Xs γ:

W = −CF αs

4π

2

mb
(−15− 16 ln r) , (3.6)

and for B̄ → Xu l ν̄:

W̃1 =
CF αs

4π

(
10

mb
− 9

n̄ · p −
12

n̄ · p ln r +
4

mb
ln r

)

W̃2 =
CF αs

4π

2

n̄ · p
y

4
W̃3 + W̃4 +

1

y
W̃5 =

CF αs

4π

(
4

mb
− 22

n̄ · p −
8

n̄ · p ln r

)

. (3.7)

Summing over (3.2), (3.3), and (3.4), and calculating the traces for each decay mode using

the expressions after equation (2.4), we find complete agreement with (3.6) and (3.7).

We are now ready to repeat this calculation using the method of regions. We perform

the calculation in d = 4 − 2ǫ dimensions and use dimensional regularization to regularize

both the UV and IR divergences. We also implicitly take µ→ µeγE/2(4π)−1/2.
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3.2 Hard-collinear region

For the hard-collinear region we find the following results.

• Self energy:

Wij = θ(p2)
CF αs

4π
tr

[

Γi /̄n Γj
1 + /v

2

]
1

n̄ · p
1

4
, (3.8)

• Box:

Wij = θ(p2)
CF αs

4π

{

tr

[

Γi /n Γj
1 + /v

2

]
1

n̄ · p

(

−1

ǫ
+ 2− ln

µ2

p2

)

+tr [Γi /n Γj /n]
1

mb

1

4

(

−1

ǫ
− 1− ln

µ2

p2

)

+ tr [Γi /n Γj /n]
n̄ · p
m2

b

1

16

}

, (3.9)

• Vertex:

Wij = θ(p2)
CF αs

4π

{

tr

[

Γi /n Γj
1 + /v

2

]
2

n̄ · p

(

−1

ǫ
+

1

2
− ln

µ2

p2

)

+

+tr [Γi /n Γj /̄n]
1

mb

1

4

(
1

ǫ
+

3

2
+ ln

µ2

p2

)

− tr
[

Γi γ
α
⊥ Γj γ⊥α

] 1

mb

1

8

−
(

tr

[

Γi /n γβ γα
⊥ Γj γ⊥α γβ

1 + /v

2

]

+ tr

[

Γi γ
α
⊥ γβ /n Γj

1 + /v

2
γβ γ⊥α

])
1

mb

1

16

}

.

(3.10)

3.3 Soft region

For the soft region we find that the “self energy” diagram does not contribute. For the

other diagrams we have:

• Box

Wij = θ(n · p)
CF αs

4π

{

tr

[

Γi /n Γj
1 + /v

2

]
1

n̄ · p

(
1

ǫ
− 3− ln

(n · p)2

µ2

)

+tr [Γi /n Γj /̄n]
1

mb

1

4
+ tr [Γi /n Γj /n]

1

mb

1

4

(
1

ǫ
− 1− ln

(n · p)2

µ2

)}

, (3.11)

• Vertex

Wij = θ(n · p)
CF αs

4π

{

tr

[

Γi /n Γj
1 + /v

2

]
1

n̄ · p 2

(
1

ǫ
− 1− ln

(n · p)2

µ2

)

+

+tr [Γi /n Γj /̄n]
1

mb

1

4

(

−1

ǫ
+ ln

(n · p)2

µ2

)}

(3.12)
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Adding up the two types of regions we find that, as expected, the sum of the hard-collinear

and soft regions reproduce the full QCD result. Notice also that the structure of the soft

region is simpler than that of the hard-collinear region. In the next section we will see that

the reason is that the soft region is accounted for by the parton level one loop expressions

for only two subleading shape function, while for the hard-collinear region we need several

subleading jet functions.

4 Effective field theory calculation

We have seen in the previous section that the one loop corrections to the hadronic tensor

which scale as O(λ0) in the end point region, arise from two kinematical regions: a hard-

collinear region and a soft region. In this section we will see how the soft region is accounted

for by the one loop corrections to the subleading shape functions’ contribution calculated

within the parton model. The hard-collinear region is accounted for by the contribution

of the time ordered product of power suppressed SCET currents. This calculation is the

basis for the subleading jet function calculation which we perform in the next section.

4.1 Soft contribution

The contribution of the soft region can be fully accounted for by calculating, within the

parton model, the one loop corrections to the subleading shape functions. In particular

there is no need to introduce new subleading shape functions. From equation (2.9) we see

that the hadronic tensor depends on several subleading shape functions. Naively, one would

assume that we need to calculate the one loop corrections for ωS(ω), s(ω), t(ω), u(ω), v(ω),

as well as the four-quark shape functions fu(ω), fv(ω). In practice, only the contributions

of ωS(ω) and u(ω) are needed for the following reasons.

- We have chosen the coordinate system such that v⊥ = 0. As a result the matrix

elements of the operator corresponding to t(ω) and v(ω), vanish at one loop, since

they only contain gluons which have perpendicular polarization.

- The matrix elements of the operators corresponding to fu(ω) and fv(ω) vanish since

they involve scaleless integrals over the n̄ component of the light quark momentum.

- Setting the residual momentum of the heavy quarks to zero, we find that the matrix

element of the operator corresponding to s(ω) vanishes.

As a result we need the “zero external gluon” matrix elements of the operators correspond-

ing to ωS(ω) and u(ω). The first can be extracted from [38]. After setting the residual

momentum k to zero, we find

ω Sparton
bare = θ(−ω)

CF αs

π

(

−1

ǫ
+ ln

ω2

µ2
+ 1

)

. (4.1)

For u(ω), we need to calculate the one loop amplitude which is the sum of the diagrams

shown in figure 2. The relevant Feynman rules needed for this calculation involve zero and
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���
Figure 2. One loop diagrams contributing to the parton level expression of u(ω).

one external gluon. We have

�k −k2
⊥ δ(ω − n · k)

�k l, µ, a

ta g nµ

n · l
[

(k − l)2⊥ δ′(ω − n · k + n · l)− k2
⊥ δ′(ω − n · k)

]

+
ta g nµ

(n · l)2 (2k⊥ · l⊥ − l2⊥)
[

δ(ω − n · k + n · l)− δ(ω − n · k)
]

. (4.2)

The notation is such that k is the incoming heavy quark residual momentum and l, µ, a

are the outgoing gluon’s momentum, polarization, and color index, respectively. For the

one gluon Feynman rule we have omitted terms in which the gluon has a perpendicular

polarization, since such terms do not contribute to the one loop amplitude for v⊥ = 0.

These Feynman rules were first calculated by Trott and Williamson in [49], where the

corresponding operator is called Q3(ω,Γ). Keeping only the terms which are proportional

to nµ in the one external gluon Feynman rule of [49], our result agrees with theirs ac-

counting for an overall factor of 2/mb and a different sign of the heavy quark residual

momentum, both arising from the slightly different definition of u(ω). Calculating the one

loop amplitude, which was not calculated in [49], and setting the residual momentum k to

zero, we find

uparton
bare = θ(−ω)

CF αs

π

(
3

ǫ
− 3 ln

ω2

µ2
− 5

)

. (4.3)

Inserting (4.1) and (4.3) into (2.9), and setting s(ω), t(ω), v(ω), fu(ω) and fv(ω) to zero,

we find:

W
(2)
ij = θ(n · p)

CF αs

4π

{

tr

[

Γi /n Γj
1 + /v

2

]
1

n̄ · p

(
3

ǫ
− 3 ln

(n · p)2

µ2
− 5

)

+tr [Γi /n Γj (/̄n− /n)]
1

mb

1

4

(

−1

ǫ
+ ln

(n · p)2

µ2
+ 1

)}

, (4.4)

which is the total contribution of the soft region, i.e. the sum of equations (3.11) and (3.12).

At this point we should note that the question of operator mixing and renormalization

with regard to u(ω) is still open, as it was not considered in [49]. The main complication
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being the need to introduce new subleading shape functions which u(ω) can mix into,

and establishing the closure of the basis. The analysis of this question goes beyond the

scope of this paper. For our purposes the important point is that the terms of the form

h0 · j0 ⊗ s1, that were already calculated in the literature, reproduce the contribution of

the soft region. As a result in the final factorization formula, no new terms are needed to

account for this contribution.

4.2 Hard-Collinear contribution

In order to reproduce the result of the hard-collinear region, we need to consider various

combinations of the SCET currents and the SCET Lagrangian.5 Symbolically we need the

following combinations:

J†(1) J (1), J†(2) J (0) + J†(0) J (2), J†(2) J (0)

∫

d4z L(0)
ξ + J†(0) J (2)

∫

d4z L(0)
ξ , (4.5)

where L(0)
ξ and J (i) are defined in equations (2.18) and (2.21), respectively. Calculating

the contribution of each combination we find that the non zero combinations are:

• J†(1) J (1)

Wij = θ(p2)
CF αs

4π

{

tr

[

Γi /̄n Γj
1 + /v

2

]
1

n̄ · p
1

4
+ tr [Γi /n Γj /n]

n̄ · p
m2

b

1

16

+

(

tr

[

Γi /̄n /n γα
⊥ Γj /nγ⊥α

1 + /v

2

]

+ tr

[

Γi /n /̄n γα
⊥ Γj

1 + /v

2
γ⊥α /n

])
1

mb

1

32

}

(4.6)

• J†(2) J (0) + J†(0) J (2), J (2) = − X̄Γ
/n

2mb
n ·Ahc

(
S†h

)

x−

Wij = θ(p2)
CF αs

4π

{

tr [Γi /n Γj /n]
1

mb

1

4

(

−1

ǫ
− 1− ln

µ2

p2

)}

(4.7)

• J†(2) J (0) + J†(0) J (2), J (2) = − X̄Γ 1
in̄·∂ n ·Ahc

(
S†h

)

x−

Wij = θ(p2)
CF αs

4π

{

tr

[

Γi /n Γj
1 + /v

2

]
1

n̄ · p

(

−1

ǫ
+ 2− ln

µ2

p2

)}

(4.8)

• J†(2) J (0)
∫

d4zL(0)
ξ + J†(0) J (2)

∫
d4zL(0)

ξ , J (2) = − X̄Γ
/n

2mb
n ·Ahc

(
S†h

)

x−

Wij = θ(p2)
CF αs

4π

{

tr [Γi /n Γj /n]
1

mb

1

4

(

−1

ǫ
− 3

2
− ln

µ2

p2

)}

(4.9)

5It is easy to show that the TOP of a first order current with the zeroth order current vanish since the

perpendicular components of the hard-collinear momentum can be chosen to be zero. This corresponds of

course to the absence of 1/
√

mb corrections to the hadronic tensor.
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• J†(2) J (0)
∫

d4zL(0)
ξ + J†(0) J (2)

∫
d4zL(0)

ξ , J (2) = − X̄Γ 1
in̄·∂ n ·Ahc

(
S†h

)

x−

Wij = θ(p2)
CF αs

4π

{

tr

[

Γi /n Γj
1 + /v

2

]
2

n̄ · p

(

−1

ǫ
+

1

2
− ln

µ2

p2

)}

(4.10)

• J†(2) J (0)
∫

d4zL(0)
ξ + J†(0) J (2)

∫
d4zL(0)

ξ , J (2) = − X̄Γ 1
in̄·∂

(i /D⊥hc /A⊥hc)
mb

(
S†h

)

x−

Wij = θ(p2)
CF αs

4π

{

tr

[

Γi /n Γj
1 + /v

2

]
1

mb

(

−1

ǫ
− 3

2
− ln

µ2

p2

)

−
(

tr

[

Γi /n γβ
⊥ γα
⊥ Γj γ⊥α γ⊥β

1 + /v

2

]

+ tr

[

Γi γ
α
⊥ γβ
⊥ /n Γj

1 + /v

2
γ⊥β γ⊥α

])
1

mb

1

16

}

(4.11)

• J†(2) J (0)
∫

d4zL(0)
ξ + J†(0) J (2)

∫
d4zL(0)

ξ , J (2) = X̄
i
←−
/D⊥hc

mb

1

in̄·
←−
∂

/̄n
2 Γ

/n
2 /A⊥hc

(
S†h

)

x−

Wij = θ(p2)
CF αs

4π

{

tr

[

Γi /n /̄n γα
⊥ Γj /nγ⊥α

1 + /v

2

]

+tr

[

Γi /̄n /n γα
⊥ Γj

1 + /v

2
γ⊥α /n

]}

1

mb

1

16
(4.12)

Using γβ
⊥ = γβ − n̄β/n/2−nβ /̄n/2 and 2/v = /n + /̄n, we can show that the sum of (4.6)–(4.12)

is equal to the hard-collinear contribution i.e. the sum of (3.8), (3.9), and (3.10). Again we

see that the contribution of the hard-collinear region is more complicated than that of the

soft region. As we will see in the next section there are seven different jet functions that

contribute at one loop, compared to only two subleading shape function that are needed

to reproduce the soft region.

5 Subleading jet functions

Following the calculations of the previous sections, it is clear that in order to properly

factorize all the terms in the hadronic tensor that are both αs and 1/mb suppressed in the

end point region, we have keep the subleading shape functions’ contribution and replace the

so called “1/mb kinematical corrections” of equations (2.13) and (2.14) by the contribution

of the subleading jet functions. By “jet function” we mean the discontinuity of a Fourier

transform of a vacuum expectation value of a time ordered product of hard-collinear fields.

By “subleading” we mean that these functions scale as O(λ0) in the end point region.

Before going into the details of the analysis of each subleading jet function, we wish to

make some general remarks. The first issue is factorization. In the following we establish
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factorization formula for terms of the form h0 · j1 ⊗ s0. More explicitly, we always have

h0 ≡ 1 and s0 is the leading order shape function. The hadronic tensor factorizes as

Wij =
∑

a

Ca tr [ Γi . . . Γj . . .]

∫

dω ja(p
2
ω)S(ω). (5.1)

Here Ca is a simple kinematical factor of mass dimension -1, e.g. 1/n̄ · p, 1/mb and the

argument of the jet function ja is p2
ω = n̄ · p (n · p + ω). The factorization formula can

be proven in an analogous way to the leading order factorization proof as presented, for

example, in [38]. The only difference is that we have subleading jet functions instead of a

leading jet function.

The second issue, which does not arise at leading order, is the “correct” definition of the

subleading jet functions and the role of parity and time reversal (PT ) symmetry. In general

the subleading jet function is the discontinuity of TOP of two different combinations of

hard-collinear fields Oa and Ob. Here O can be a hard-collinear quark or a product of

hard-collinear quark and a hard-collinear gluon, or even a more complicated object. As a

result we typically have both

∫

d4x e−ipx
〈

Ω
∣
∣
∣T
{

O†a(0), Ob(x)
}∣
∣
∣Ω
〉

and

∫

d4x e−ipx
〈

Ω
∣
∣
∣T
{

O†b(0), Oa(x)
}∣
∣
∣Ω
〉

.

(5.2)

The subleading jet function(s) should be the discontinuity of the sum of the two terms. In

practice we find that after we decompose each TOP according to the different color and

Lorentz structures, we can use translation invariance and the PT symmetry of the strong

interaction to relate the two TOPs. We can therefore define the subleading jet function as

the discontinuity of the coefficient of a specific structure in either TOP.

We will illustrate both issues in the more detailed calculation of the first subleading jet

function. These details will be suppressed in the derivation of subsequent jet functions. As

before, the one loop calculation are performed in d = 4− 2ǫ dimensions and we implicitly

take µ→ µeγE/2(4π)−1/2.

The following list of the subleading jet functions is not necessarily the complete list

of possible subleading jet functions. For example, if the QCD currents are matched onto

SCET beyond tree level we would expect more complicated functions which can depend

on more than one variable. We wish to emphasize, though, that the list is sufficient to

describe all the terms of the form of equation (5.1) at zeroth order in αs(µh) and to all

orders in αs(µi). In particular it includes all the terms of the form h0 · j1 ⊗ s0 at O(αs).

5.1 The list of subleading jet functions

5.1.1 jn

This jet function arises from the TOP of the leading order current J (0) = e−imbv·x X̄Γ
(
S†h

)

x−

and the second order current J (2) = −e−imbv·x X̄ Γ
/n

2mb
n ·Ahc

(
S†h

)

x−

. These currents are

matched at tree level and as a result the Wilson coefficients equal 1. Consequently, the

hard function, which is simply the product of the Wilson coefficients, equals to 1 also. The
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contribution of this combination of currents to the hadronic tensor is given by

Wij =
1

2πMB
Im

〈

B̄

∣
∣
∣
∣
i

∫

d4x ei(q−mbv)·x

×T

{
(
h̄S
)

Γi X(0), −X̄Γj
/n

2mb
n ·Ahc

(

S†h
)

x−

}∣
∣
∣
∣
B̄

〉

+
1

2πMB
Im

〈

B̄

∣
∣
∣
∣
i

∫

d4x ei(q−mbv)·x

×T

{

−
(
h̄S
)
n ·Ahc

/n

2mb
Γi X(0), X̄ Γj

(

S†h
)

x−

}∣
∣
∣
∣
B̄

〉

. (5.3)

The leading order Lagrangian does not contain any interactions between hard-collinear and

soft fields. Since the B-meson states contain only soft particles, we should take the vacuum

matrix element of the hard-collinear fields. From equation (5.3) we seem to have two such

matrix elements, but these are related by the PT symmetry of the strong interaction, as

explained in appendix A. Consequently, we have

/n

2
δkl Jn(p2)

def.
=

∫

d4x e−ip·x〈Ω|T
{
Xk(0),

[
X̄n ·Ahc

]

l
(x)
}
|Ω〉

PT
=

∫

d4x e−ip·x〈Ω|T
{
[n ·Ahc X]l (0), X̄k(x)

}
|Ω〉, (5.4)

where k, l are color indices. Inserting this definition into (5.3), we have

Wij = − Im

∫

d4x ei(q−mbv)·x

∫
d4p

(2π)4
eip·x i

π
Jn(p2)

1

mb

1

2MB

〈

B̄

∣
∣
∣
∣

[
(
h̄S
)

0
Γi

/n

2
Γj

/n

2

(

S†h
)

x−

+
(
h̄S
)

0

/n

2
Γi

/n

2
Γj

(

S†h
)

x−

]∣
∣
∣
∣
B̄

〉

. (5.5)

Defining the subleading jet function jn as

jn(p2) =
1

π
Im
[
iJn

(
p2
)]

, (5.6)

and using the definition of the leading order shape function [27, 38]

〈B̄(v)|
(
h̄S
)

0
Γ
(
S†h

)

x−

|B̄(v)〉
2MB

=
1

2
tr

(

Γ
1 + /v

2

)∫

dω e−
i
2
ωn̄·x S(ω), (5.7)

we finally find the factorization formula

Wij = − 1

8mb
tr [ Γi /n Γj /n]

∫

dω jn(p2
ω)S(ω) , (5.8)

which is of the general form of equation (5.1).

An explicit one loop calculation of the bare subleading jet function jn, which can also

be extracted from the sum of equations (4.7) and (4.9), gives

jn(p2) = θ(p2)
CF αs

4π
· 4
(

1

ǫ
+

5

4
+ ln

µ2

p2

)

. (5.9)
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5.1.2 jn′

This jet function arises from the TOP of the leading order current J (0) = e−imbv·x X̄Γ
(
S†h

)

x−

and the second order current J (2) = − e−imbv·x X̄Γ 1
in̄·∂ n ·Ahc

(
S†h

)

x−

. We define

1

n̄ · p
/n

2
δkl Jn′(p2) =

∫

d4x e−ip·x

〈

Ω

∣
∣
∣
∣
T

{

Xk(0),

[

X̄
1

in̄ · ∂ n ·Ahc

]

l

(x)

}∣
∣
∣
∣
Ω

〉

=

∫

d4x e−ip·x

〈

Ω

∣
∣
∣
∣
T

{[

n ·Ahc
1

−in̄ · ←−∂
X

]

l

(0), X̄k(x)

}∣
∣
∣
∣
Ω

〉

, (5.10)

where k, l are color indices. We define the subleading jet function jn′ as,

jn′(p2) =
1

π
Im
[
iJn′(p2)

]
. (5.11)

The contribution of jn′ to the hadronic tensor is

Wij = − 1

n̄ · p tr

[

Γi
/n

2
Γj

1 + /v

2

] ∫

dω jn′(p2
ω)S(ω) . (5.12)

An explicit one loop calculation of the bare subleading jet function jn′ , which can also be

extracted from the sum of equations (4.8) and (4.10), gives

jn′(p2) = θ(p2)
CF αs

4π
· 6
(

1

ǫ
− 1 + ln

µ2

p2

)

. (5.13)

5.1.3 jS
11 and jA

11

These two jet functions arise when combining two first order currents. Recall from (2.21)

that the first order current is

J (1) = − e−imbv·x
X̄

/̄n

2
/A⊥hc

1

in̄ · ←−∂
Γ
(

S†h
)

x−

− e−imbv·x
X̄Γ

/n

2mb
/A⊥hc

(

S†h
)

x−

. (5.14)

Since there are two terms in the first order current, one might naively assume that we

will need to define a different jet function for each pair of terms. This is not the case, as

we explain in detail in appendix B. Schematically, the reason is that the inverse derivative

acts on all the hard-collinear fields in the first term of (5.14), which translates into an

overall 1/n̄ · p factor.

For all the terms we need to consider the following decomposition of the TOP of

hard-collinear fields,
∫

d4x e−ip·x
〈

Ω
∣
∣
∣T
{[

A
µ
⊥hc X

]

k
(0) ,

[

X̄A
ν
⊥hc

]

l
(x)
}∣
∣
∣Ω
〉

=

n̄ · p /n

2

gµν
⊥

d− 2
δkl J S

11(p
2) + n̄ · p /n

2
γ5

iǫµν
⊥

d− 2
δkl J A

11(p
2). (5.15)

It is clear that gµν
⊥ and iǫµν

⊥ are the only possible tensors the TOP can depend on. The Dirac

structure that accompanies each tensor is determined by PT invariance (see appendix A).

We now define as usual,

jS
11(p

2) =
1

π
Im
[
iJ S

11(p
2)
]

and jA
11(p

2) =
1

π
Im
[
iJ A

11(p
2)
]
. (5.16)
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By an explicit calculation one can show that while jS
11 starts O(αs), jA

11 is non-zero

only at O(α2
s). The one loop result for jS

11 is

jS
11(p

2) = −θ(p2)
CF αs

4π
. (5.17)

The contribution of jS
11 and jA

11 to the hadronic tensor is

Wij = − n̄ · p
16m2

b

tr [Γi /n Γj /n]

∫

dω jS
11(p

2
ω)S(ω)− n̄ · p

16m2
b

tr [Γi /nγ5 Γj /nγ5]

∫

dω jA
11(p

2
ω)S(ω)

−
{

1

4n̄ · p tr

[

Γi /̄nΓj
1 + /v

2

]

− 1

16mb
tr
[

Γi γ
⊥
ρ Γj γρ

⊥

]

− 1

16mb
tr
[

Γi γ
⊥
ρ γ5 Γj γρ

⊥γ5

]
}

×
∫

dω

[

jS
11(p

2
ω) + jA

11(p
2
ω)

]

S(ω). (5.18)

5.1.4 jG and jK

This jet function arises from the TOP of the leading order current J (0) = e−imbv·x X̄Γ
(
S†h

)

x−

and the second order current J (2) = − e−imbv·x X̄Γ 1
in̄·∂

(i /D⊥hc /A⊥hc)
mb

(
S†h

)

x−

. We find it

more useful to use the original form of the current as it appeared in [14, 50]. Using the

identity

i /D⊥ i /D⊥ = (iD⊥)2 +
g

2
σ⊥µνGµν

⊥ , (5.19)

we find that the current can be written as,

X̄ Γ
1

in̄ · ∂
(i /D⊥hc /A⊥hc)

mb

(

S†h
)

x−

= ξ̄ Γ
1

in̄ ·D

[
i /D⊥hc i /D⊥hc W

]

mb

(

S†h
)

x−

= X̄Γ
1

in̄ · ∂

[
W † (iD⊥hc)

2 W + g
2W † σµνGµν W

]

mb

(

S†h
)

x−

.

(5.20)

Since (iD⊥hc)
2 is even under PT symmetry, while Gµν is odd, we need to separate the two

parts of this current. We define,

/n

2
δkl JK(p2) =

∫

d4x e−ip·x

〈

Ω

∣
∣
∣
∣
T

{

Xk(0),

[

X̄
1

in̄ · ∂ W † (iD⊥hc)
2 W

]

l

(x)

}∣
∣
∣
∣
Ω

〉

=

∫

d4x e−ip·x

〈

Ω

∣
∣
∣
∣
T

{[

W †
(

i
←−
D⊥hc

)2
W

1

−in̄ · ←−∂
X

]

l

(0), X̄k(x)

}∣
∣
∣
∣
Ω

〉

,

(5.21)

iǫµν
⊥

d− 2

/n

2
γ5 δkl JG(p2) =

∫

d4x e−ip·x

〈

Ω

∣
∣
∣
∣
T

{

Xk(0),

[

X̄
1

in̄ · ∂ W †Gµν W

]

l

(x)

}∣
∣
∣
∣
Ω

〉

=

∫

d4x e−ip·x

〈

Ω

∣
∣
∣
∣
T

{[

W †Gµν W
1

−in̄ · ←−∂
X

]

l

(0), X̄k(x)

}∣
∣
∣
∣
Ω

〉

,

(5.22)
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and the corresponding subleading jet functions,

jK(p2) =
1

π
Im
[
iJK(p2)

]
and jG(p2) =

1

π
Im
[
iJG(p2)

]
. (5.23)

Their contribution to the hadronic tensor is

Wij = − 1

mb
tr

[

Γi
/n

2
Γj

1 + /v

2

] ∫

dω jK(p2
ω)S(ω)

− 1

16mb
tr
[
Γi /nγ5 Γj (/̄n− /n) γ5

]
∫

dω jG(p2
ω)S(ω). (5.24)

An explicit one loop calculation gives,

jK(p2) = θ(p2)
CF αs

4π
· (−2)

(
1

ǫ
+

5

4
+ ln

µ2

p2

)

jG(p2) = −θ(p2)
CF αs

4π
. (5.25)

Notice the interesting fact that at one loop 2jK +jn = 0. Similarly 2JK+Jn = 0, which

is true even without expanding in ǫ. It is unclear whether this is a one loop “accident” or

a more general result that holds to all orders in perturbation theory.

5.1.5 jA and jS

This jet function arises from the TOP of the leading order current

J (0) = e−imbv·x X̄Γ
(
S†h

)

x−

and the second order current J (2) = − e−imbv·x X̄
i
←−
/D⊥hc

mb
×

× 1

in̄·
←−
∂

/̄n
2 Γ

/n
2 /A⊥hc

(
S†h

)

x−

. We define

∫

d4x e−ip·x

〈

Ω

∣
∣
∣
∣
T
{

Xk(0),
[

X̄ i
←−Dµ
⊥hc

1

in̄ · ←−∂
A

ν
⊥hc

]

l
(x)
}
∣
∣
∣
∣
Ω

〉

=

/n

2

gµν
⊥

d− 2
δkl JS

(
p2
)

+
/n

2
γ5

iǫµν
⊥

d− 2
δkl JA

(
p2
)
. (5.26)

PT symmetry implies that

∫

d4x e−ip·x

〈

Ω

∣
∣
∣
∣
T
{[

A
ν
⊥hc

1

in̄ · ∂ iDµ
⊥hc X

]

l
(0), X̄k(x)

}
∣
∣
∣
∣
Ω

〉

=

/n

2

gµν
⊥

d− 2
δkl JS(p2)− /n

2
γ5

iǫµν
⊥

d− 2
δkl JA(p2). (5.27)

Notice the minus sign in front of the second term.

We now define the corresponding subleading jet functions,

jS

(
p2
)

=
1

π
Im
[
iJS

(
p2
)]

and jA

(
p2
)

=
1

π
Im
[
iJA

(
p2
)]

. (5.28)
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Their contribution to the hadronic tensor is

Wij =
1

16mb

{

tr
[

Γi γ
⊥
ρ Γj γρ

⊥

]

− tr
[

Γi γ
⊥
ρ γ5 Γj γρ

⊥γ5

]
}

×
∫

dω
[
jS(p2

ω) + (3− d) jA(p2
ω)
]

S(ω). (5.29)

An explicit one loop calculation gives,

jS(p2) = θ(p2)
CF αs

4π
·
(

−3

2

)

jA(p2) = θ(p2)
CF αs

4π
·
(

1

2

)

. (5.30)

5.2 Renormalization

Having defined and calculated all the subleading jet function to one loop order, we are

ready to discuss their renormalization. We note first that only 3 out of the 8 functions we

have defined require renormalization at one loop order. These are

jbare
n (p2, µ) = θ(p2)

CF αs

4π
· 4
(

1

ǫ
+

5

4
+ ln

µ2

p2

)

+O(α2
s)

jbare
n′ (p2, µ) = θ(p2)

CF αs

4π
· 6
(

1

ǫ
− 1 + ln

µ2

p2

)

+O(α2
s)

jbare
K (p2, µ) = θ(p2)

CF αs

4π
·
(
− 2
)
(

1

ǫ
+

5

4
+ ln

µ2

p2

)

+O(α2
s). (5.31)

In order to renormalize these function we have to introduce a new function

j0(p
2) = θ(p2) +O(αs), (5.32)

where only the zeroth order in αs part of j0(p
2) is needed in order to renormalize the

subleading jet functions at first order in αs.

It is very tempting to relate this function to the integral over the leading order jet

function, namely to identify j0(p
2) with

∫ p2

dp′ 2 J(p′ 2, µ) (5.33)

(where the lower limit of the integral can be any negative number), since both are equal

at O(α0
s). A very similar function, j(ln p2

µ2 , µ) was defined in [25]

j

(

ln
p2

µ2
, µ

)

=

∫ p2

0
dp′ 2 J(p′ 2, µ). (5.34)

In that paper the authors derived the two loop expression for j and its anomalous dimen-

sion. Since we only use the O(α0
s) expression for j0, we will refrain from identifying it with

equation (5.33) or with j of [25]. It seems plausible that all these expression are the same,
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but in order to determine whether they coincide beyond O(α0
s), a two loop calculation of

the subleading jet function is needed. Such a calculation is beyond the scope of this paper.

The most convenient scheme in which to renormalize the subleading jet functions

(as well as the subleading shape functions) is the DR subtraction scheme [51, 52]. In

this scheme the Dirac algebra is performed in d = 4 dimensions, while loop integrals are

evaluated in d = 4 − 2ǫ dimensions. Choosing this scheme ensures that the renormalized

subleading functions are the same for B̄ → Xu l ν̄ and the Q7γ − Q7γ contribution to

B̄ → Xs γ.

We renormalize the subleading jet function in the following way. Define the matrix

Z(p2, p′ 2, µ) via






jn(p2)

jn′(p2)

jK(p2)




 =

∫

dp′ 2 Z(p2, p′ 2, µ)








jbare
0 (p′ 2)

jbare
n (p′ 2)

jbare
n′ (p′ 2)

jbare
K (p′ 2)








. (5.35)

At one loop order we find that in the DR scheme

Z(p2, p′ 2, µ) = δ(p2 − p′ 2)






−4a 1 0 0

−6a 0 1 0

2a 0 0 1




 , (5.36)

where a = CF αs/4πǫ. Notice that Z(p2, p′ 2, µ) is not a square matrix, since we do not

renormalize j0. If indeed j0 is related to the integral over the leading order jet function,

then Z will have to include other distributions apart from a delta function, for details,

see [25].

From Z(p2, p′ 2, µ) we can find the renormalization group equations for the subleading

jet functions. We have at one loop

d

d ln µ






jn(p2)

jn′(p2)

jK(p2)




 =

∫

dp′ 2 δ(p2 − p′ 2)
CF αs

4π






8 0 0 0

12 0 0 0

−4 0 0 0













j0(p
′ 2)

jn(p′ 2)

jn′(p′ 2)

jK(p′ 2)








, (5.37)

The expression for the renormalized subleading jet functions are

jn(p2, µ) = θ(p2)
CF αs

4π
· 4
(

5

4
+ ln

µ2

p2

)

+O(α2
s)

jn′(p2, µ) = θ(p2)
CF αs

4π
· 6
(

−1 + ln
µ2

p2

)

+O(α2
s)

jK(p2, µ) = θ(p2)
CF αs

4π
·
(
− 2
)
(

5

4
+ ln

µ2

p2

)

+O(α2
s). (5.38)

It is unclear whether with the inclusion of j0 the list of the subleading jet functions closes

under renormalization. In particular one might expect that we need to define a more
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general subleading jet function that depends on more than one variable. For example the

discontinuity of the Fourier transform of

〈

Ω
∣
∣
∣T
{

Xk(0), n ·Ahc
mn(y), X̄l(x)

}∣
∣
∣Ω
〉

(5.39)

where k, l,m, n are color indices. An interesting fact about this type of subleading jet

function is that at order g2 it only becomes singular in the y → 0 and y → x limits, where

it can be related to jn.

Clearly this topic deserves further study, but for our purposes the renormalization via

the introduction of j0 is sufficient at the order in which we are working, namely, αs(µi)/mb.

For phenomenological applications it is convenient to set the scale of the subleading

jet functions to be the same as the scale of the leading order jet function. This is also

the convenient scale in which to extract the leading order shape function [29]. At any

case the resummation of the subleading logs is expected to be a small effect. As a result,

the renormalization group equations of the subleading jet function are not expected to be

important for phenomenological applications.

5.3 Results

We are ready to summarize our results. The subleading jet functions’ contribution to the

hadronic tensor can be written as

W SJF
ij = −

∫

dω

[

jn(p2
ω, µ)

2T̃2

mb
+ jn′(p2

ω, µ)
T̃1

n̄ · p + jK(p2
ω, µ)

T̃1

mb
+ jG(p2

ω, µ)
T̃4

mb

+jS
11(p

2
ω, µ)

(

n̄ · p
m2

b

T̃2 +
T̃3

n̄ · p −
T̃5

mb
− T̃6

mb

)

+jA
11(p

2
ω, µ)

(

n̄ · p
m2

b

T̃7 +
T̃3

n̄ · p −
T̃5

mb
− T̃6

mb

)

+jS(p2
ω, µ)

(

T̃5

mb
− T̃6

mb

)

+ jA(p2
ω, µ)

(

− T̃5

mb
+

T̃6

mb

)]

S(ω), (5.40)

where the traces T̃1 . . . T̃6 are6

T̃1 =
1

2
tr

[

Γi /n Γj
1 + /v

2

]

, T̃2 =
1

16
tr
[

Γi /n Γj /n
]

,

T̃3 =
1

4
tr

[

Γi /̄n Γj
1 + /v

2

]

, T̃4 =
1

16
tr [Γi /nγ5 Γj (/̄n− /n) γ5] ,

T̃5 =
1

16
tr
[

Γi γ⊥ρ Γj γρ
⊥

]

, T̃6 =
1

16
tr
[

Γi γ
⊥
ρ γ5 Γj γρ

⊥γ5

]

T̃7 =
1

16
tr
[

Γi /nγ5 Γj /nγ5

]

. (5.41)

6Under the assumption that Γi and Γj contain the same number of Dirac’s gamma matrices we can relate

T̃1 . . . T̃6 to T1 . . . T4 in equation (2.10). The relations are T1 = T̃1/2, T2 = T̃1/2 − 2T̃2, T3 = 2T̃6, T4 = T̃4.
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The subleading jet functions jS
11, j

A
11, jn, jn′ , jK , jG, jS , jA are defined in section 5.1. The

renormalized one loop expressions for them are

jS
11(p

2, µ) = θ(p2)
CF αs(µ)

4π

(
− 1
)

+O(α2
s)

jA
11(p

2, µ) = 0 +O(α2
s)

jn(p2, µ) = θ(p2)
CF αs(µ)

4π

(

5 + 4 ln
µ2

p2

)

+O(α2
s)

jn′(p2, µ) = θ(p2)
CF αs(µ)

4π

(

−6 + 6 ln
µ2

p2

)

+O(α2
s)

jK(p2, µ) = θ(p2)
CF αs(µ)

4π

(

−5

2
− 2 ln

µ2

p2

)

+O(α2
s)

jG(p2, µ) = θ(p2)
CF αs(µ)

4π

(
− 1
)

+O(α2
s)

jS(p2, µ) = θ(p2)
CF αs(µ)

4π

(

−3

2

)

+O(α2
s)

jA(p2, µ) = θ(p2)
CF αs(µ)

4π

(
1

2

)

+O(α2
s). (5.42)

These expressions are in the DR subtraction scheme [51, 52]. As explained in section 5.2 this

is the most appropriate renormalization scheme for the subleading jet and shape functions.

The scale dependence in equation (5.40) cancels against the scale dependence of the

subleading shape functions’ contribution [27]

W SSF
ij =

∫

dω δ(n · p + ω)

[
ω S(ω, µ) + t(ω, µ)

mb
T2 +

s(ω, µ)

mb
T1 +

t(ω, µ)

n̄ · p T3 +
u(ω, µ)

n̄ · p T1

− v(ω, µ)

n̄ · p T4 − παs

(
fu(ω, µ)

n̄ · p T1 +
fv(ω, µ)

n̄ · p T4

)]

+O(αs). (5.43)

For the definition of the subleading shape functions and the traces T1 . . . T4, see section 2.

We now specialize to the cases of semileptonic and radiative B decays, using the

expressions for Γi and Γj given in section 2. For the Q7γ −Q7γ contribution to B̄ → Xs γ

we need the “trace” of the hadronic tensor: W . Its relation to the photon spectrum of

B̄ → Xs γ is given in equation (2.5). The subleading jet functions’ contribution to W is

W SJF =

∫

dω

[
1

mb

(

4jK(p2
ω, µ) + 4jn(p2

ω, µ) + 2jG(p2
ω, µ)

)

+
4

n̄ · p jn′(p2
ω, µ)

+
2n̄ · p
m2

b

(

jS
11(p

2
ω, µ)− jA

11(p
2
ω, µ)

)]

S(ω). (5.44)

Note that jS and jA do not contribute to W . At the lowest order in αs this expression is

W SJF =

∫

dω
1

mb

CF αs(µ)

4π
θ(p2

ω)

[

32 ln
µ2

p2
ω

− 18

]

S(ω) +O(α2
s), (5.45)
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where in order to simplify the expression, we have used the fact that for this decay mode

n̄ · p = mb. For completeness we list also the subleading shape functions’ contribution

W SSF = − 2

mb

∫

dω δ(n · p + ω)
[

− ω S(ω, µ) + s(ω, µ)− t(ω, µ) + u(ω, µ)− v(ω, µ)

− παs fu(ω, µ)− παs fv(ω, µ)
]

+O(αs) (5.46)

For B̄ → Xu l ν̄ we need the three “form factors”: W̃1, W̃2 and W̃comb ≡ y
4W̃3 + W̃4 +

1
y W̃5. W̃i are defined in equation (2.6) and their relation to the triple differential decay

rate is given by equation (2.7). The subleading jet functions’ contribution is

W̃ SJF
1 = −

∫

dω

[
1

n̄ · p

(

2jn′(p2
ω, µ) + jS

11(p
2
ω, µ) + jA

11(p
2
ω, µ)

)

+
1

mb

(

2jK(p2
ω, µ) + jG(p2

ω, µ)

)]

S(ω)

W̃ SJF
2 = −

∫

dω
2

n̄ · p

[

jS
11(p

2
ω, µ) + jA

11(p
2
ω, µ)

]

S(ω)

W̃ SJF
comb = −

∫

dω

[(
4

mb
− 2

n̄ · p

)(

jS
11(p

2
ω, µ) + jA

11(p
2
ω, µ)

)

+
2

n̄ · p

(

jn(p2
ω, µ)− jG(p2

ω, µ)

)]

S(ω). (5.47)

At the order in which we are working in, it can approximated by n̄ ·p/mb. As for W , jS and

jA do not contribute to W̃1, W̃2 or W̃comb. At the lowest order in αs the last equation is

W̃ SJF
1 = −

∫

dω
CF αs(µ)

4π
θ(p2

ω)

[
1

n̄ · p

(

12 ln
µ2

p2
ω

− 11

)

− 1

mb

(

4 ln
µ2

p2
ω

+ 6

)]

S(ω)

W̃ SJF
2 =

∫

dω
CF αs(µ)

4π
θ(p2

ω)
2

n̄ · p S(ω)

W̃ SJF
comb = −

∫

dω
CF αs(µ)

4π
θ(p2

ω)

[
1

n̄ · p

(

8 ln
µ2

p2
ω

+ 14

)

− 4

mb

]

S(ω). (5.48)

If we are using the so called “BLNP” approach [29], i.e. using the definition of y as in

equation (2.8), then some of the subleading terms are absorbed into the leading order

formula (2.15). The subleading jet functions’ contribution to W̃1 in this case is given by

W̃ SJF
1, BLNP = −

∫

dω
CF αs(µ)

4π
θ(p2

ω)

[
1

n̄ · p

(

12 ln
µ2

p2
ω

− 15

)

− 1

mb

(

4 ln
µ2

p2
ω

+ 2

)]

S(ω),

(5.49)

where there is no change to W̃2 and W̃comb. For completeness we list also the subleading

shape functions’ contribution

W̃ SSF
1 =

∫

dω δ(n · p + ω)

[
ω S(ω, µ) + s(ω, µ) + t(ω, µ)

mb
+

u(ω, µ)− v(ω, µ)

n̄ · p

]

W̃ SSF
2 = 0

W̃ SSF
comb = −2

∫

dω δ(n · p + ω)

[
ω S(ω, µ) + 2t(ω, µ)

n̄ · p − t(ω, µ) + v(ω, µ)

y n̄ · p

]

. (5.50)
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6 Summary and conclusions

Decay rates of inclusive B decays, namely B̄ → Xu l ν̄ and the Q7γ −Q7γ contribution to

B̄ → Xs γ, are known to factorize in the end point region at the leading order in ΛQCD/mb

into a product of a hard function and a universal leading order jet function convoluted

with a universal leading order shape function. The hard and jet function are calculable

in perturbation theory while the shape function is a non perturbative object. Recently

the hard function for semileptonic decays was calculated at O(α2
s) [15–18]. Together with

the already known two loop calculation of the jet function [25], this will allow us to reach

a full O(α2
s) accuracy, at leading power, in describing the decay rates in general, and in

extracting |Vub| in particular.

Beyond leading order in ΛQCD/mb, one would expect the decay rate to factorize into

sums of products of subleading hard functions and subleading jet functions convoluted with

subleading shape functions. Of these power suppressed corrections, only the subleading

shape functions were known. In this paper we have analyzed the subleading jet functions’

contribution. These arise first at order O(αs) and appear in the partial rate convoluted

with the leading order shape function.

First, we have argued that at order ΛQCD/mb only subleading jet and shape functions

contribute. Subleading hard function can only appear when multiplied with subleading jet

or shape functions. We have demonstrated this explicitly at one loop by showing that the

O(αs) corrections which are ΛQCD/mb suppressed in the end point region, arise from two

momentum regions: a hard-collinear region and a soft region. We have then shown that

the soft region is accounted for in the parton model by the one loop matrix elements of the

known “tree level” subleading shape functions. The hard-collinear region is accounted for

in the parton model by the time ordered products of subleading SCET currents that apart

from the heavy quark itself, do not include any soft fields or soft covariant derivatives.

In the main section of this paper, section 5, we have defined to all orders in αs(µi), for

the case of a tree level hard function, the 8 subleading jet functions that can contribute

to partial rates of inclusive B decays, and calculated their one loop expressions. After a

short discussion of the renormalization of the subleading jet functions, we specialized to

the phenomenologically interesting cases of B̄ → Xu l ν̄ and the Q7γ −Q7γ contribution to

B̄ → Xs γ and presented explicit expressions for these decay modes. The main results of

the paper are collected in section 5.3.

We can now summarize the factorization formula for inclusive B decays in the follow-

ing way

dΓ ∼

known
︷ ︸︸ ︷

H · J ⊗ S +
1

mb

∑

i

h · J0 ⊗ si +

new
︷ ︸︸ ︷

1

mb

∑

k

h · jk ⊗ S +O
(

1

m2
b

)

,

where the label “new” refers to the new results of this paper. The label “known” refers

to terms in the factorization formula for which we have explicit expressions for all of their

perturbative components. Thus H is the leading order hard function, J is the leading order

jet function, both known at O(α2
s), J0 is the O(α0

s) part of the leading order jet function,
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h = 1 +O(αs), and jk are given in section 5.3. The rest of the 1/mb suppressed terms for

which we do not have such explicit expressions can be found in [26] and [28].

While the subleading jet functions’ contribution is both αs and 1/mb suppressed in

the end point region, their contribution becomes more important as one moves out of the

this region, since the 1/mb suppression is reduced as one is integrating over larger and

larger portions of phase space. The one-loop subleading shape functions contribution,

although formally αs/mb suppressed in the end point region, is expected to become even

more power suppressed outside of the end point region. Furthermore, the kinematical area

outside of the end point region is becoming more important with the constant improvement

of experiments and the relaxation of kinematical cuts. Together with the recent calculation

of the leading order hard function for semileptonic decays at O(α2
s), this work takes another

step towards a more precise description of inclusive B decays in the end point region.

Although we have not presented any kind of numerical analysis, the implementation of

the subleading jet function analysis with the framework of “BLNP” [29] is relatively easy.

One needs to replace equation (2.13) by (5.46) and (2.14) by equations (5.48) and (5.49).

At the same time one needs to modify the treatment of the subleading shape function

in [29]. Only the combined numerical analysis would be meaningful. Such a study is left

for future work.

Another issue that deserves further consideration is the renormalization of the sublead-

ing jet functions. In particular, it would be desirable to have a complete basis of subleading

jet functions. As in the case of the subleading shape functions [49], it seems that further

study is needed if we wish to understand the renormalization and mixing of these non

local operators.

Finally, subleading jet functions arise also outside of flavor physics, for example, in

the x→ 1 region of deep inelastic scattering. More specifically, the subleading jet function

jS
11 appear in the factorization formula for the longitudinal structure function [33–36].7 A

more detailed study of the subleading jet functions’ contributions to the x → 1 region of

deep inelastic scattering is left for future work.
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A Consequences of PT symmetry

In this section we will prove our claim that PT symmetry and translation invariance allows

us to relate the TOP of two different hard-collinear operators. Define

Tab =

∫

d4x e−ipx 〈Ω|T
{

O†a(0), Ob(x)
}

|Ω〉 =

=

∫

d4x e−ipx
[

θ(x0)〈Ω|Ob(x)O†a(0)|Ω〉 ± θ(−x0)〈Ω|O†a(0)Ob(x)|Ω〉
]

Tba =

∫

d4x e−ipx 〈Ω|T
{

O†b(0), Oa(x)
}

|Ω〉 =

=

∫

d4x e−ipx
[

θ(x0)〈Ω|Oa(x)O†b(0)|Ω〉 ± θ(−x0)〈Ω|O†b(0)Oa(x)|Ω〉
]

(A.1)

We would like to relate Tab and Tba. Using translation invariance, and the PT invariance

of the strong interactions and of the vacuum, we have

〈Ω|Oa(x)O†b(0)|Ω〉 = 〈Ω|Oa(0)O
†
b(−x)|Ω〉 =

〈

Ω

∣
∣
∣
∣
∣

[(

O†b

)PT
]†

(x)

[(

Oa

)PT
]†

(0)

∣
∣
∣
∣
∣
Ω

〉

〈Ω|O†b(0)Oa(x)|Ω〉 = 〈Ω|O†b(−x)Oa(0)|Ω〉 =

〈

Ω

∣
∣
∣
∣
∣

[(

Oa

)PT
]†

(0)

[(

O†b

)PT
]†

(x)

∣
∣
∣
∣
∣
Ω

〉

. (A.2)

In order to relate Tab and Tba we need to relate

〈Ω|
[(

O†b

)PT
]†

(x)

[(

Oa

)PT
]†

(0)|Ω〉 to 〈Ω|Ob(x)O†a(0)|Ω〉

〈Ω|
[(

Oa

)PT
]†

(0)

[(

O†b

)PT
]†

(x)|Ω〉 to 〈Ω|O†a(0)Ob(x)|Ω〉. (A.3)

As our first example consider Jn. In section 5 we defined,
(

/n

2

)

ab

δkl Jn(p2) =

∫

d4x e−ip·x
[

θ(x0)〈Ω|
[
X̄ n ·Ahc

]

b l
(x)Xa k(0)|Ω〉

−θ(−x0)〈Ω|Xa k(0)
[
X̄n ·Ahc

]

b l
(x)|Ω〉

]

,

(A.4)

where k, l are color indices and a, b are spinor indices. Consider now the other TOP:

Tother =

∫

d4x e−ip·x〈Ω|T
{
[n ·Ahc X]a l (0), X̄b k(x)

}
|Ω〉 =

=

∫

d4x e−ip·x
[

θ(x0)〈Ω|X̄b k(x) [n ·Ahc X]a l (0)|Ω〉 − θ(−x0)〈Ω| [n ·Ahc X]a l (0)X̄b k(x)|Ω〉
]

.

(A.5)

Using translation invariance and the PT symmetry we have, in the Weyl representation of

Dirac γ matrices,

Tother =

∫

d4x e−ip·x
[

θ(x0)〈Ω|
[
X̄ γ1 γ3 n ·Ahc

]

a l
(x)
[
γ3 γ1

X
]

b k
(0)|Ω〉

−θ(−x0)〈Ω|
[
γ3 γ1

X
]

b k
(0)
[
X̄ γ1 γ3 n ·Ahc

]

a l
(x)|Ω〉

]

. (A.6)
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Comparing (A.4) and (A.6) and using γ3 γ1 γµ γ1 γ3 = (γµ)T we find that

Tother =

(

γ3 γ1 /n

2
γ1 γ3

)

ba

δkl Jn(p2) =

(
/n

2

)

ab

δkl Jn(p2), (A.7)

which proves equation (5.4).

As a second example, consider J S
11 and J A

11. Here we use the same transformations to

prove the decomposition the TOP into two jet functions. In section 5.1.3 we defined

T11 =

∫

d4x e−ip·x〈Ω|T
{[

A
µ
⊥hc X

]

a k
(0) ,

[

X̄A
ν
⊥hc

]

b l
(x)
}

|Ω〉 =

n̄ · p gµν
⊥

d− 2
δkl J S

11(p
2)

(
/n

2

)

ab

+ n̄ · p iǫµν
⊥

d− 2
δkl J A

11(p
2)

(
/n

2
γ5

)

ab

. (A.8)

Using translation invariance and the PT symmetry we have

T11 =

∫

d4x e−ip·x〈Ω|T
{[

A
ν
⊥hcγ

3 γ1
X

]

b l
(0),

[

X̄ γ1 γ3
A

µ
⊥hc

]

a k
(0)
}

|Ω〉

= n̄ · p gµν
⊥

d− 2
δkl J S

11(p
2)

(

γ3 γ1 /n

2
γ1 γ3

)

ba

+ n̄ · p iǫνµ
⊥

d− 2
δkl J A

11(p
2)

(

γ3 γ1 /n

2
γ5 γ1 γ3

)

ba

= n̄ · p gµν
⊥

d− 2
δkl J S

11(p
2)

(
/n

2

)

ab

+ n̄ · p iǫµν
⊥

d− 2
δkl J A

11(p
2)

(
/n

2
γ5

)

ab

, (A.9)

which proves that gµν
⊥ is accompanied by (/n/2), while iǫµν

⊥ is accompanied by (/nγ5/2). In

a similar manner we can use PT symmetry to analyze the rest of the TOPs.

B T{J1, J1} subleading jet function(s)

In section 5.1.3 we argued that the TOP of the first order SCET current with itself, gives

rise to only one subleading jet function. The reason is that the inverse derivative is acting

on all the hard-collinear fields. On the other hand, we were forced to defined two different

jet function jn and jn′ since the inverse derivative was only acting on the hard-collinear

gluon and not on the hard-collinear quark. In this appendix we give a rigorous proof of

these facts.

We consider the TOP of two currents: J1(x) and 1
in̄·∂J2(x). Define

T12 = i

∫

d4x e−ip·x
〈

Ω
∣
∣
∣T
{

J†1(0), J2(x)
}∣
∣
∣Ω
〉

T21 = i

∫

d4x e−ip·x
〈

Ω
∣
∣
∣T
{

J†2(0), J1(x)
}∣
∣
∣Ω
〉

T12′ = i

∫

d4x e−ip·x

〈

Ω

∣
∣
∣
∣
T

{

J†1(0),
1

in̄ · ∂ J2(x)

}∣
∣
∣
∣
Ω

〉

T2′1 = i

∫

d4x e−ip·x

〈

Ω

∣
∣
∣
∣
T

{

J†2(0)
1

−in̄ · ←−∂
, J1(x)

}∣
∣
∣
∣
Ω

〉

. (B.1)

We would like to prove that

1

π
Im

(

T12′ + T2′1

)

= − 1

n̄ · p
1

π
Im

(

T12 + T12

)

. (B.2)
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Consider T12′ first. Inserting a complete set of states |r〉 we can write it as

T12′ = i

∫

d4x e−ip·x

[

θ(x0)
∑

r

〈Ω| 1

in̄ · ∂ J2(x)|r〉〈r|J†1(0)|Ω〉

±θ(−x0)
∑

r

〈Ω|J†1(0)|r〉〈r| 1

in̄ · ∂ J2(x)|Ω〉
]

. (B.3)

Using translation invariance we find

T12′ = i

∫

d4x e−ip·x

[

θ(x0)
∑

r

1

n̄ · r 〈Ω|J2(0)|r〉〈r|J†1 (0)|Ω〉e−irx

±θ(−x0)
∑

r

1

(−n̄ · r) 〈Ω|J
†
1(0)|r〉〈r|J2(0)|Ω〉eirx

]

(B.4)

(we use r to denote both the state and its momentum). Using the identity

θ(x0) =
i

2π

∫

dω
e−iωx0

ω + iǫ
,

and integrating over x and ω, we obtain

T12′ = i2
∑

r

〈Ω|J2(0)|r〉〈r|J†1 (0)|Ω〉 1

n̄ · r
(2π)3δ3(~p + ~r)

−p0 − r0 + iǫ

±i2
∑

r

〈Ω|J†1(0)|r〉〈r|J2(0)|Ω〉
1

(−n̄ · r)
(2π)3δ3(~p− ~r)

p0 − r0 + iǫ
. (B.5)

Repeating the same procedure for T2′1 we find

T2′1 = i2
∑

r

〈Ω|J1(0)|r〉〈r|J†2 (0)|Ω〉 1

n̄ · r
(2π)3δ3(~p + ~r)

−p0 − r0 + iǫ

±i2
∑

r

〈Ω|J†1(0)|r〉〈r|J2(0)|Ω〉
1

(−n̄ · r)
(2π)3δ3(~p− ~r)

p0 − r0 + iǫ
. (B.6)

Since that by definition 〈a|Ji|b〉∗ = 〈b|J†i |a〉, we find that

T12′ + T2′1 = i2
∑

r

2Re

[

〈Ω|J2(0)|r〉〈r|J†1 (0)|Ω〉 1

n̄ · r

]
(2π)3δ3(~p + ~r)

−p0 − r0 + iǫ

±i2
∑

r

2Re

[

〈Ω|J†1(0)|r〉〈r|J2(0)|Ω〉
1

(−n̄ · r)

]
(2π)3δ3(~p− ~r)

p0 − r0 + iǫ
. (B.7)

Using the identity Im [1/(u + iǫ)] = −π δ(u), we have

1

π
Im

(

T12′ + T2′1

)

=
1

(−n̄ · p)

∑

r

2Re
[

〈Ω|J2(0)|r〉〈r|J†1 (0)|Ω〉
]

(2π)3δ4(p + r)

± 1

(−n̄ · p)

∑

r

2Re
[

〈Ω|J†1(0)|r〉〈r|J2(0)|Ω〉
]

(2π)3δ4(p − r)

= − 1

n̄ · p
1

π
Im

(

T12 + T12

)

. (B.8)
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We should note that throughout the above derivation we have assumed that the n̄ com-

ponent of the total momentum of the state is not zero and therefore its inverse is defined.

This assumption follows from the fact that by definition the hard-collinear states have a

“large” n̄ component of momentum. In the same way we can prove that

1

π
Im

(

i

∫

d4x e−ip·x〈Ω|T
{

J†2(0)
1

−in̄ · ←−∂
,

1

in̄ · ∂ J2(x)

}

|Ω〉
)

=

=
1

(n̄ · p)2
1

π
Im

(

i

∫

d4x e−ip·x〈Ω|T
{

J†2(0), J2(x)
}

|Ω〉
)

. (B.9)

Using these identities we obtain the results of section 5.1.3.
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